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Features of the dynamics of a vertically dropping thick jet of non-Newtonian 
fluids are investigated. 

Axisymmetric fluid flow is described in a long-wave approximation, when the extent of 
the solid partof the jet considerably exceeds its radius, by the following system of equa- 
tlons [i, 2] 

(-~-i- OU ) &rz~R z ~OR. + pgnRZ, 
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The OZ axis is directed along the jet and o = Tzz--J(Txx + Tyy)/2. Each jet element is con- 
sidered subjected to uniaxial drawing at the elongation velocity ~U/~z in the computation of 
the stress tensor. The boundary conditions to system (i), (2) 

Ui~-o = Uo, Rl,=o = Ro (3) 

are posed  in a section beh ind  the zone of velocity profileadjustment after emergence from 
the nozzle, where the flow is substantially nonuniform. For a jet with a low Reynolds number, 
the size of this zone is on the order of the jet radius. The quantity wRo2Uo determines the 
fluid mass flow rate constant. 

In [3] we studied the phase protrait of stationary system (I), (2) for a nonlinearly vis- 
cous fluid 

aU 
= �9 (1~1) sign (o) (4) 

az 

and a viscoelastic fluid with a model of Maxwell type [2] 

-~- + U, -- 2cz~ cz~ �9 __ 
Oz . Oz = n-~zz' Oz \ o r  + U  Oz ~ = 3 ~ 1 0 z '  Oz < 0 .  (5) 

Here r was not specified/ for (4), and only the general properties of the fl0w function were 
used. 

It is shown in [3] that there is a unique solution of the stationary equations (i) and 
(2) for the nonllnearly viscous fluid (4), for which ~U/~z § 0, R § 0 as z § m. The nature 
of the change in elongation velocity and the longitudinal stress along the jet is determined 
by the magnitude of a parameter of Froude type aV = 2Uo2/gLv , where L v is the length of a 
column unit cross section and weight equal to the longitudinal stress for which the elonga- 
tion rate is 2Uo/L v = ~(pgLv). For Newtonian fluids L v = (6~Uo/pg) */s, aV = (2pU~/3g~)*7,~ 
Whenav >> 1 the roleof the inertial forces is manifest only far from the nozzle. The elongation rate 
and longitudina~stress initially grow along the jet, and then diminish. The maximal elongation rate 
is (4Uog/Lv~) */s. The correspondlngvalue of the longitudinal stress for a Newtonian fluid is 
-(18pn~ga) */s. For a vlscoelastic fluid with the model (5), the solutlon of the stationary 
equations (I), (2) for which ~U/~z § 0, R ~ 0, o § 0 as z § ~, is unique only for 6n/l > 
2DUo 2 + ~/Ro. The manlfold of solutions when this inequality is spoiled is due to different 
values of the longitudinal stress for z = 0 and is associated with the presence of "memory? 
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in the fluid. It was shown in [3] that the fluid elastic properties appear most clearly for 
thick jets, when 12~/A << pg2%2, Uo < (2a --l)gA. In this case the longitudinal stress grows 
along the jet to reach the maximum (2a -- l)PgZAZ~Omax~U2pga%=~ which considerably exceeds 
the shear modulus R/A, and then the stress diminishes. The elongation rate is -i/2aA on the 
portion of the jet near the section where the maximum of o is achieved, the elongation veloc- 
ity is ~i/2aA. These deductions agree with tests [4]. When 12~/~ >> pg=%2, the fluid elastic 
properties do not appear and the results for Maxwell and Newtonian fluids agree. 

An analysis performed in [3] showed that for a low exhaust velocity in this stationary 
jets of nonlinearly viscous and viscoelastic fluids, maximums in the longitudinal stress are 
achieved only at the nozzle. The magnitude of the maximum is here determined only by the 
rheologlcal properties of the fluid. If it exceeds the rupture strength of the fluid o r 
then the stationary solid jet does not form. At this time the characteristics of metals and 
highly concentrated polymer solutions have been studied sufficiently well [5]. It is shown 
that:the rupture stress is determined mainly by the magnitude of the reversible strain accumu- 
lated by the fluid. The strength has practically not been investigated for slightly viscous 
polymer solutions. However, it is known that insertion of passive accumulators in such solu- 
tions reduces the strength characteristics. Let us examine the nonstationary efflux of a 
fluid with low rupture strength. 

L(t) 

Let us turn to the Lagrange variables t, z--+~= S ~RZdz' dL/dt=U(L, l) in (i)and (2), where 
Z 

L is the coordinate of a fixed liquid section. Then 
L(t) 

--~RZO--~-, -}- zRZUIL+ dz (6) 
Oz O~ Ot Ot Ot O~ 
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Using the relationship (2) in (6), we obtain 

= _0__ + ~ R 2 U  ' a, ( 7 )  
at at 

Going over to the Lagrange variables in (i) and (2) is accomplished by means of (6) and (7). 
The fluid inertial can be neglected in (I) for a slow efflux. In the noninertial approximation 
(i) and (2) are written in Largrange variables in the form 

2 OR OU 0 
: - -  = , ( ~ R  2 + x ~ R )  = p g .  ( 8 )  

R at Oz a~ 

Lagrange variables were used in [3, 6-9] for the analysis of Jets. In [3, 7, 8], the equations 
(8) were used without gravity (g= 0) to analyze the dissociation of a horizontal capillary 
Jet of a rheologically complex fluid. The complex formulas obtained for the system (8) (see 
[3, 8]) make difficult the analytical investigation of changes in the longitudinal stress 
along the jet at a fixed time. Consequently, we shall henceforth examine thick Jets for which 
the capillary forces are inessential. Taking into account that ~ = 0 for o = 0 (z = L) at the 
free end of the jet, we find from the second equation in (8) 

a =  Pg---~ (9) 
~R 2 

Since ol~=o = 0, then @U/3zl~=o = 0, and according to the first equation in (8), the 
quantity R e = Rl~=o does not vary with time. It equals the radius of the free jet that re- 
laxes after emergence from the nozzle. The turning of the free end of the jet under the ef- 
fect of capillary forces is not described in the approximation under consideration. Substi- 
tuting the formulas for the ~longatlon velocity and the longitudinal stress from (8) and (9) 
into the rheological equation for the fluid, we obtain an equation that describes the change 
in the jet radius with time in which ~ enters only as a parameter, i.e., the radius of each 
jet section is developed independently. The initial condition for the radius of a section is 
imposed at the time of i~s emergence from the nozzle for z = 0 or ~ = ~Ro2Uot. The quantity 
Ro depends on ~, since the fluid relaxes in the presence of the longitudinal jet OIz=o. For 

= 0 we have Ro = Rc. The computation of Ro(E) requires the solution of the problem in the 
transition zone after the nozzle. 

For the nonlinearly viscous fluid (4) in the dimensionless quantities u = R/Rc, ~ = ~/pg 
Uctc, ~=~/R--R~ Uclo T = I/tc, where tc is found from the relationship i/tc = r Uc is 
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the velocity corresponding to the section with radius Re, i.e., the flow rate divided by 
nRc ~, the change in jet radius is described by the equation 

2 Ou 
--~V 0-7- = g ( ~ ) '  . t ~ = ~  = ~o ~), �9 = u~  - (lO) 

Here uo = Ro/Rc, F:=d~(pgUct~)/~(PgUct~). Since pgU c = pgUctc~(pgUct c) , then the quantity Uct c 
grows more slowly than U */* as the rate of efflux increases for a pseudoplastic fluid, and more 
rapidly than Uc .7~ for d~latant fluid. For a Newtonian fluid tc = ~3~/pgUc, Uct c = ~ .  

Integrating (i0) we obtain 

j " 2dr 

vF(I/v") 
.(~--~)~,'~ 

(11) 

As T grows the section radius diminishes for fixed ~. Using (ii), we find 

- - = = - -  1 " - -  I q~F(~) d %  
O~ tt ~ u O f ,  %F(%)  d~ - - % F ( % )  . (12 )  

Here ~0 =~u~(~. The expression in the square brackets in (12) is independent of the time. 
As ~ grows, the value of uo(~) does not. Consequently, d~po/d~ I and the function ~0F(~0) 
grows monotonically as ~ increases. Since F(~)~lorcp~l,thenfor ~m, the root of the equa- 
tion~Oq/O~=O, ~0(~m)~l. In the majority of cases, the change in Ro(~)can be neglected for 
filled polymers. Then uo = 1 and it follows at once from (12) that there is a unique value 
~m = i. The analysis performed shows that for t~tc~ m the longitudinal stress is reduced 
monotonically along the jet o[t=o:=f'gUctcq~(T). For t > tc~m the stress increases along the Jet 
up to the section ~m = nRc2Uc~m, where it reaches the maximum ~max = 9 gUctc~m/U2(~m,T), and 
then diminishes. The value of ama x grows without limit with time. When it exceeds the rup- 
ture strength of the fluid, the jet is discontinuous at this site. The volume of the fluid 
portion being separated is V = ~RcaUctc~m . The expression_tp =tcT p can be used to estimate 
the time of rupture, where Tp is determined from (ii) for ~ = ~m, u = 0. For Ro(~) = R c 
~m = i. As is seen from (12), the section of least radius (~u/3~ = 0) is found below the 
rupture section. Its coordinate varies with time. As t + tp it tends to the section in which 
the Jet is ruptured. The change in jet length in time is given by the relationship 

T 

L = Ud~ ~ ~) �9 
II 2 {~, 

0 

As t h e  r a t e  o f  e f f l u x  i n c r e a s e s  i t s  l e n g t h  g r o w s  i n  p r o p o r t i o n  tO U c t  c a t  t h e  t i m e  o f  r u p t u r e ,  
n+l 

L e t  u s ~ x a m i n e  t h e  p o w e r - l a w  m o d e l  ~ = ( ~ 1 3  2 " K / / n a n d  t h e  v i s c o p l a s t i c  S h v e d o v - m o d e l  
= ( o - -  3 r  f o r  a > 3r r = 0 f o r  a ~ 3 T 0 w h i c h  d e s c r i b e  h i g h l y  f i l l e d  p o l y m e r  s o l u -  

t i o n s  in greater detail. In the interest of simplification we consider Ro(~) ffi Rc In the case 
of the power-law model Uctc = 3*/2(KUcn/pg) */n+*, u = [I -- ~*/n(T--~)/n]n/2) ~=~II --~I/"(T--~/al 

l I+-- 
' 1 " l 'z''2 The least value for the radius Umin=[1--(~/(nT )) occurs in the section ~min = T/(n + i). 

T - -  1\  n 
For T > 1 the maximal value of the longitudinal stress ~max=I/ I-- ) corresponds to ~m = I. 

For ~-+zp = n+ l ~ma~-+~. For the viscoplastic model pgUct c = ~T~/~, 'where s = i/(*/2 + 

+ , , =  1-" S ]; xor ~ > s. These formulas" 

show that there is a section of length /3To/og with radius Re near the free end of a jet of 
viscoplastic fluid where there is no flow. For ~ > 1 the maximal value of the stress 

$ 
qOma x : I 

L l - - s  J 

c o r r e s p o n d s  t o  ~m ffi 1 .  F o r  T - + T p = l - - l - - S i n ( 1 - - S ) ~ m a x - + o o .  Then  npgU c >> To a 
s 

plastic and Newtonial jet formulas agree. 

, a n d  t h e  v i s c o -  
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For the viscoelastic fluid (5) the change in Jet radius with time is given in the dimen- 
sionless variables u = R/Re, z----I/%, ~----~/~P,2cUc~, q)= o/pgUc% by the relationship 

(4r 2~ In Uo + ~ . 2~ ("~ -- "~) = ~ -~' (13) 

Where uo = Ro/Rc, ,.~ = 6~/9gUc l=. The parameter ~ characterizes the relationship between the 
shear modulus of the fluid n/l and the weight column of unit section of length UcX. Using 
(13), we have 

0~- = q~ (4~ - -  2)~-k- ~u ~ [(4= - -  2)~ + ~ou z] Uo d~ " 

As is seen from this expression, the relative stress distribution along the jet is independent 
of time. If the change in Ro(~) can be neglected, then 

CO 

Ou 1 2 ~ -  (1 - -  u z) O~ (4= - -  2) f - -  2~ z -}- 

O~ 4o~ - -  2 -}- ouZl~ O~ (4~ - -  2) ~ + ~u ~ 

For T < ~m, where ~m = a -- x/2 + r -- i/2)2 + ~/~, the stress along the jet is reduced. For 
> ~m it grows up to the section ~mwhere ~max= ~m/u~) and then diminishes. The value of 

Um(Z) is determined from the relationship 
2 --~m" 

(14) 

The least value of the jet radius Uml n = (i -- 2~min/m) ~/2 corresponds to the coordinate ~min 
that is found from the equation 

- -  ( 2 = - -  l) In 1 2 m =~- -2~min -  (15)  

AS ~-->oo ~max-~oo. The volume of the portion of fluid being separated is V = ~UcX~ m. 

Let us examine the limit cases of small ~ << i and large m >> i viscosities. ~en m << 
(2a -- i) 2, ~m = 2a -- i. Neglecting the second term in the left side of (14), we find 

~ m ~ x ~ p g U c k ( 2 = - - l ) e x p  ( 2 e - - 1 ) ~  1 , t ~ . ~ ( 2 e ~ l ) X .  

In thls case the volume being separated is V : (2a -- I)~Rc2Uc X. For z ~ (2a -- i) we have 
from (15) 

For z >> ~ the second term in the left side of (13) is negligible for ~and u = exp 
[(3-- T)/(4a-- 2)]. Therefore, with the exception of a small jet volume near the free end 

2 OR 
>> 6nRc2~/pg~ the fluid is stretched with the constant elongation velocity R Ot ~ 

i/(2=--I)%. This result, which is analogous to the kinetics of thinning of a thread during 

dissociation of a capillary jet of a polymer solution [3, 7, 8], is caused by the elastic 
properties of the fluid. For ~ >> (2a -- 1) 2 ~m = ~" For t + ~ ~min + /~ = ~-m" The 
volume of fluid being separated is V = ~RJUcto, to = J3~/ggUc. For t E 2to we find the first 

term in the left side of (14) 

The first term is significant only for t >> 2to. Then the rate of elongatlon in the section 

~m becomes i/(2a -- l)l, and the stress is 

[ t - - 2 ' o  ] 
o.~ ,  ~, (3~pgUc) '/2 exp [ (2= - -  1) k j "  

The elastic properties of the fluid change the jet behavior for ~ << i. In this case, 
the volume of the fluid portion being separated Is proportional to the velocity of efflux. 
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Rupture occurs at the site located considerably above the section with minimal radius ~m/~min : 
(2a -- i) 2~/~>> i. This is different principally from the behavior of the nonlinearly viscous 
fluid for which the volume being separated grows more slowly than the first power of the veloc- 
ity. Thus, for the power-law model the volume is proportional to Ucn/(n +~). An analogy 
occurs only for n >> i. At the time of separation the section with minimal radius in the 
nonlinearly viscous fluid approaches the rupture site from below. When ~ >> I, the behavior 
of the viscoelastic fluid is similar to that of a viscous fluid. 

The results obtained for ~ << i are in agreement with the experimental data in [i0] for 
slightly viscous suspensions on a polymer base that possess considerable elastic properties. 
The deductions for the nonlinearly viscous and viscoplastic fluids correspond to the tests in 
[ill for a highly filled suspension on a polymer base with high viscosity. 

The character described above for the jet rupture is realized for low velocities when the 
stress near the nozzle does not exceed Oli m in the first stage of the efflux (~m)" Other- 
wise the rupture occurs near the nozzle and the volume of the fluid being separated is V = 
~RcaOlim/pg. 

As the rate of efflux increase, the role of the fluid inertial forces increases. An 
analysis [3] of the stationary equations (i) and (2) with the inertial forces taken into ac- 
count shows that the maximal value of the longitudinal stress is reduced with the growth of 
velocity. When this quantity becomes less than the rupture strength of the fluid, a stationary 
dropping jet is formed. 

NOTATION 

p, fluid density; R, jet radius; U, fluid velocity; • coefficient of surface tension; 
g, free-fall acceleration; Tii , stress tensor components; o, longitudinal stress; ~(o), flow 
function; %, relaxation time; a, a parameter; 0.5 < ~i; ~, viscosity; To, yield stress of 
the Shvedov--Bingham model for:shear flow. ~ 
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